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 Standard introductory texts on statistical methods in psychology deal with tests on means, 

variances, correlations, and proportions prior to treating the analysis of variance. Generally, excluding 

ANOVA, they cover a maximum of 12 testing situations, dealing with, for each of the above four 

parameters, a “1-Sample,” “2-Sample Independent,” and “Two-Sample Dependent” hypothesis test. 

 Many books present only a subset of these twelve situations.  For example, standard texts seldom 

present procedures for comparing correlations from two dependent samples. In this chapter, we shall 

develop a general theoretical approach which will handle (with some minor adjustments for individual 

cases) all of the standard testing situations for means, proportions, and correlations. (Variances will require 

a special treatment later.) The method will also allow us to generate test statistics for a variety of 

circumstances not always covered in psychological statistics texts. Later, as a convenient by-product, we 

will also develop a general procedure for constructing confidence intervals, using a slight modification of 

the material developed in this section. 

Our approach will be as follows.  First, we shall develop general theory which applies to all of the 

relevant testing situations.  Then we will apply the theory, adding modifications and/or improvements 

where applicable, to testing means, proportions, and correlations.  

1. A General Model for Linear Combination Hypotheses 

 In all of the situations covered in this chapter, we will be interested in a single numerical value 

which is expressable as a linear combination of a group of J parameters. We will refer to these J 

parameters as θ j , and the linear combination of interest can be written  

 κ θ=
=

∑c j j
j

J

1

 (1.1) 

 In the two-tailed testing situation, our statistical null hypothesis H0  will be of the form 

H a0 : κ =  where a is numerical constant (often zero).  In one-tailed testing situations, the hypothesis 

could be of the form κ ≥ a  for example. Since the generalization of our procedure from 2-tailed to 1-tailed 

situations is rather obvious, we will, for compactness, not emphasize it during our general discussion. 
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Instead, we will concentrate on the two-tailed test in our examples. The general form κ = a  covers a 

variety of interesting cases, including the traditional 1- and 2-sample tests. For example, consider tests on 

means, in which the most common tests are for the following null hypotheses: μ = a , μ μ1 2=  (for 

independent samples) and  μ μ1 2=  (for dependent, or “matched” samples).  Since they can, respectively, 

be written μ = a , μ μ1 2 0− = ,  and μ μ1 2 0− = , they are all of the form κ = a . 

 In what follows, we will assume that, for each θ j , we have an unbiased, normally distributed 

estimator θ j . Furthermore, we also assume that the sampling variance γ 2  of θ  is somehow known (later 

we will relax this assumption somewhat, and assume only that a consistent estimator γ 2  of this variance is 

available). Symbolically, we will express the fact that “θ j  is normally distributed with mean θ j  and 

sampling variance γ j
2 ” with notation  

 ,θ θ γj N j j≈ FH
I
K

2  (1.2) 

In the case where the θ j  have been computed on dependent samples (for example, repeated measures on 

the same subjects), we will assume further that, for any two estimates θ i  and θ j , their covariance γ ij  is 

also known or estimable. 

1.1 Independent Samples, Sampling Variances Known 

In this section, we assume that J independent samples of size n j are available to test hypotheses about J 

parameters.  We can easily construct a normally distributed, unbiased estimator K of κ  as  

 K c j j
j

J

=
=

∑ θ
1

 (1.3) 

Since the θ j  are based on independent samples, they will, themselves, be independent.  Consequently, the 

expected value and variance of K may be calculated easily from the general theory of linear composites. 
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 Var K cK j j
j

J

b g = =
=

∑σ γ2 2 2

1

 (1.5) 

 We know that linear composites of independent, normal random variables are themselves 

normally distributed, so that we can, consequently state that 

 K N K≈ κ σ, 2d i  (1.6) 

 From this, it immediately follows that 

 Z K

K

=
−κ

σ
 (1.7) 

will have a N 0 1,b g  distribution. 

 Equations 1.4 through 1.7 thus provide a general form for constructing a test statistic in cases 

where a linear composite κ  of parameters is of interest, and unbiased, normally distributed estimators with 

known variance are available for each parameter. 

 

 Example. Consider the mean μ  of a single population P with a N μ σ, 2d i distribution. We 

estimate μ  with x• , a sample mean based on a random sample of n observations from P.  We wish to test 

the statistical null hypothesis 

 H a0: μ = . 

This example is particularly interesting, because we can apply the general theory given above twice. First, 

it is important to realize that a sample of n  independent observations, all taken from the same population 

P, may be conceptualized as either (1) a single sample of size n or (2) n independent samples of size 1. 

Suppose we adopt the latter conceptualization first, and apply our theory to derive the expected value and 

sampling variance of the statistic x• .  Since x•  may be written as 

  x
n

xi
i

n

•
=

= ∑ 1

1

, 

where all the xi  have the same mean μ  and variance σ 2 , it follows directly from Equations 1.4 through 

1.7 that  

 x N
n• ≈

F
HG
I
KJμ σ,

2

 (1.8) 
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 Specifically, 
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 (1.9) 

and 

 

σ σ

σ

σ

x
i

n

n

n
n

n

•
= F
HG
I
KJ

= FHG
I
KJ

=

=
∑2

2
2

1
2

2

2

1

1  
(1.10) 

Now that we have established the expected value and sampling variance of x• , we may use  Equations 1.4 

through 1.7 directly, to write a test statistic for H0 . In this case, E κ μb g =  , K x= • , γ σ2 2= n , whence, 

substituting in Equations 1.4 through 1.7, we obtain 

 Z
x a

n
=

−•

σ 2
 (1.11) 

This is the familiar “single-sample” test for a single mean, “when the population variance is known” given 

in many introductory psychological statistics textbooks. 

1.2 Independent Samples, Sampling Variances Unknown but Estimable 

Case 1.1 is of theoretical interest, but it seldom arises in practice. Needless to say, it is not likely that we 

will know enough about a population to have precise knowledge of its variance without also knowing its 

mean. It might seem, then, that the theory we have developed so far would not be of much use.  Actually, 

however, the assumptions in 1.1 can be relaxed considerably, and an asymptotically normal test statistic 

can still be obtained.  Specifically, we now require only that the asymptotic distribution of 

 n i i
1 2 θ θ−e j  
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be N i0 2, βd i  for some finite β i
2 , and that a consistent estimator of β i

2  be available.  This will be true 

when the following situations are satisfied: 

1. The θ i  have asymptotic distributions which are N θ γi i, 2d i . 
2. The γ i

2  can be written in the form β i n2  for some finite β i
2 . 

3. The β i
2  can be estimated (consistently with estimates β i

2 ) from sample data. 

If  1–3 are met, then the statistic  

 Z K a

K

=
−

σ 2
, (1.12) 

where 

 σ γ
β

K j j
j

J

j
j

jj

J

c c
n

2 2 2

1

2
2

1

= =
= =

∑ ∑  (1.13) 

will have an asymptotic distribution which, if the null hypothesis κ = a  is true, will be N 0 1,b g . 
 

 Example. The Central Limit Theorem, in the form usually given in psychology statistics texts, 

states that, so long as the population has an arbitrary distribution with finite variance, a sample mean x•  

will have an asymptotic sampling distribution which, as n  becomes large, approaches a normal 

distribution with mean μ  and variance σ 2 n . Clearly, then, the sample mean x•  meets the minimal 

requirements of this section, since, in the above notation, β σ2 2= , and σ 2  can be estimated with a sample 

variance s2 .  Hence, for any population distribution having a finite variance σ 2  and mean μ , the test 

statistic 

 Z
x a

s n
=

−•

2
 (1.14) 

will be asymptotically distributed N 0 1,b g  if μ = a . 

1.3 Dependent Samples, Sampling Variances and Covariances Unknown but 

Estimable 

In some situations, subjects are observed more than once, or, alternatively, samples are matched (e.g., 

husband-wife pairs are used in two experimental groups) so that it is no longer tenable to assume that 

observations in the J groups are independent.  In this case, one can still construct an asymptotically normal 
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test statistic, so long as consistent estimators for the sampling covariances of the estimators θ j  are 

available.  The test statistic will be similar in form to Equation 1.12 above, except now (assuming θ j  and 

θ k  have covariance γ βjk jk n=  

 σ β βK j j
j

J

j k jk
j k

n c c c2 2 2

1

1 2= +
F
HG

I
KJ= >

∑ ∑b g  (1.15) 

 This modified equation takes into account the fact that the individual estimators are no longer 

independent.  

 In what follows, we will draw upon the general theory presented above to construct test statistics 

to handle the most common tests on means, proportions, and correlations.  Special cases will involve minor 

improvements on and extensions to the general theory, and these will be made explicit where necessary. 

2. Specific Theory for Tests on Means 

2.1 Variances and/or Covariances Known 

The theory we present here is given in many of the more advanced psychological statistics texts.  It is 

obtained very easily from the general theory, by simply substituting known facts about the sampling 

variance and covariance of sample means into relevant expressions in Chapter 1.  

 Specifically, suppose the sample mean x j•  is based on a sample of size n j  from a population 

having mean μ j  and variance σ j
2 . As we have seen already, x j•  has expected value μ j , and sampling 

variance σ j jn2 . Moreover, it can be shown (in a manner similar to the way we proved the result for a 

sampling variance) that, if two means are based on non-independent samples on random variables having 

covariance σ ij , that the covariance between the means is σ ij n . Substituting these results, i.e., 

 γ σj j jn2 2=  (2.1) 

 θ μj j=  (2.2) 

 θ j jx= •  (2.3) 

 γ σij ij n=  (2.4) 

we have the following general theory for testing means when variances and covariances are known: 
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2.1.1 Independent Samples 

For a null hypothesis of the form  

 H c aj j
j

J

0
1

: κ μ= =
=

∑ , (2.5)  

the test statistic will be of the form 

 Z K a

K

=
−

σ
,  (2.6) 

where 

 K c xj j
j

J

= •
=

∑
1

,  (2.7) 

and 

 σ
σ

K j
j

jj

J

c
n

2 2
2

1

=
=

∑ . (2.8) 

 Example. An experimenter hypothesizes that the mean “Depression Score” of first-year students 

at her university is 85.  The standard deviation of such scores is known to be 15.  The experimenter takes a 

random sample of 36 independent observations from the population of first year students, and finds a 

sample mean depression score of 90.  What is the probability of obtaining an x•  of 90 or higher if the 

experimenter's hypothesis is true? 

 In this case, the null hypothesis may be expressed as 

 H0 85: μ = . 

This is a linear combination of the form κ = a , where only one population mean is involved in κ  and the 

single linear weight c1  is +1 . Hence, K x x= + =• •1b g  and σ σ σK n n2 2 2 21= + =b g . The test statistic is 

therefore 

 

Z
x a

n
x a

n

=
−

=
−

=
−

=

•

•

σ

σ

2

90 85
15 6

2 00
/

.

 (2.9)
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Consulting the normal curve table, we see that the probability of a Z  less than or equal to 2.00 is .9772, 

and the probability of a Z  higher than 2.00 is only .0228.  In the face of this evidence, we might well 

decide to reject the experimenter's hypothesis. 

 

 Example. A professor has a hypothesis that vitamin E, consumed for two days prior to a statistics 

exam, will have absolutely no effect on a statistics student's test performance.  His graduate student 

believes otherwise and conducts the following experiment. Two groups of 25 students each are randomly 

selected from the statistics classes at the university.  Prior to the statistics exams, one group consumes 400 

I.U. of Vitamin E, while the other group consumes placebo gelatin capsules.  Exam results are: 

x• =1 47Vitamin E groupb g ;  2 (Placebo group) 86.x• =  It is known that σ 2 50=  for both populations. In 

our general theoretical formulation, this is a hypothesis of the form 

             H0 1 2 0: μ μ− = . 

Hence it is a linear combination hypothesis in which there are two linear weights, +1  and −1 . 

Consequently, K x x= −• •1 2 , and σ σ σK n n2
1
2

1 2
2

2= + . The test statistic is 

 Z
x x

K

=
−• •1 2

σ
, 

where  

 σ
σ σ

K n n
= +1

2

1

2
2

2

. 

We have 

 

Z =
−

+

=
−

= −

47 86
50
25

50
25

39
2
19 5.

 

 If the professor's hypothesis is true, the probability of obtaining a Z-statistic this small or smaller 

is virtually zero.  The experimental results would thus lead us to suspect very strongly that the professor's 

hypothesis is incorrect. 



Unified Approach  Page 9 

2.1.2 Dependent Samples 

In this case, we assume that covariances as well as variances can be estimated. The test statistic would be 

the same as in the independent sample case, except that σ K
2  would now be calculated as  

 σ σ σK j j
j

J

j k jk
j k

n c c c2 2 2

1

1 2= +
= >

∑ ∑b g  

No examples will be given, since this theory is rarely ever applied directly. 

2.2 Variances and Covariances Unknown, Populations Normally Distributed 

2.2.1 Independent Samples 

In most cases of practical interest involving tests on population means, it is unreasonable to assume that 

variances are somehow known. As we have seen in Section 1.1, an asymptotically normal statistic could be 

obtained by simply substituting sample variances and covariances in the formulae given in sections 1.1, 

2.1.1 and 2.1.2 above. 

 However, in 1908, writing under the pen name “Student,” the statistician W.S. Gossett produced 

results which imply that, if certain assumptions are met, and if a particular consistent estimation process is 

used in implementing the theory in Section 1.1, then the exact distribution of the resulting test statistic can 

be determined.  This statistic, which is of the same general form as the test statistics given in Section 2.1.1, 

is called “Student's t ” statistic in honor of its creator. 

 For Gossett's results to be (strictly) applicable, the following assumptions about the statistical 

populations must hold. 

 

• The populations must have a multivariate normal distribution. (If samples are independent, this 

simplifies to an assumption that individual populations are normally distributed.) 

• The populations must have equal variances, if the test is to be performed on independent samples. 

(This assumption is referred to by a variety of names, such as the “homoscedasticity assumption,” or 

“homogeneity of variances” assumption.) 

 

 For the statistic to have a t distribution, the assumption of equal variances must be incorporated 

into the denominator of the test statistic.  When this is done, the term σ 2  can be factored out of the 
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resulting expression. To obtain a t-statistic, a particular kind of estimator must be used. Thus, for 

independent samples, the formula for σ K
2  is simplified to 

 σ σK
j

jj

J c
n

2 2
2

1

=
=

∑  (2.10) 

where σ 2  is the pooled,  unbiased estimator of σ 2  (also known as “mean square within” in the analysis of 

variance), computed as 

 σ 2

2

1

1

2

1

1

1

1

=

−

−
=

−

−
=

=

=

•

∑

∑

∑n s

n

n s

n J

j j
j

J

j
j

J

j j
j

J

d i

d i

d i
 (2.11) 

where   

 n n j
j

J

•
=

= ∑
1

 (2.12) 

is the total number of observations in the J groups. (Note that, when sample sizes are equal, σ 2  is simply 

the arithmetic average of the J sample variances.)  Consequently, the general formulae for constructing a t-

statistic for testing a linear combination hypothesis about means, when variances are not known, but can 

assumed to be equal, and populations are normal, is  

 t K a

K

ν
σ

=
−

2
 (2.13) 

where  

 ν = −•n J  (2.14) 

is the number of degrees of freedom for the t-statistic,  

 K c xj
j

J

j=
=

•∑
1

, (2.15) 

and σ K
2  is as given by Equations 2.10–2.12.  

 

 Example. The Müller-Lyer Illusion in Memory. You may already be familiar with the Müller-

Lyer illusion. In this illusion, one horizontal line appears to be shorter than it actually is, while another line 

appears to be longer than it actually is. Suppose, in a variant of the typical M-L task, we ask a subject to 
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study one part of the M-L illusion (i.e., the one with the “outward arrows” which make a line appear longer 

than it actually is) and then draw the horizontal line from memory. Suppose the horizontal line is actually 5 

cm.  The question is, will the illusion persist in memory? The null hypothesis in this case is 

 H0 5: μ = , 

that is, if there is no illusion effect, the average “reproduced” line segment should be 5 cm.  Suppose that 

an experiment is run in which 9 subjects all give their judgements. The following data are obtained: 

x s n• = = =9 4 92,  ,  . Application of the general formulae in this section yield the following test statistic: 

 

t
x
s n

t

n−
•=

−

=
−

=

1

8

5

9 5
2 3
6 00.

 

 Apparently, there is a significant illusion effect, even in memory. The rejection point for a t 

statistic with 8 degrees of freedom for a hypothesis test with α =.05 , two-tailed, is 2.306. 

 Example. Transcendental Meditation and Memory. Transcendental Meditation (TM) is a 

meditation technique which was publicized widely in the 1970's. Many benefits were claimed by its 

adherents, and improved memory was one of them.  To test the hypothesis that TM improves memory, we 

conduct a two group experiment, in which one group receives TM training, the other group a similar type 

of training which is claimed by the skeptical to be equivalent to TM, but which TM adherents claim is 

clearly an inferior meditation technique. Ten subjects are randomly selected for each group. All subjects 

receive training, followed by a standard memory recall task.  The null hypothesis is  

 H0 1 2: μ μ= . 

Using the general equations, we construct a test statistic of the form 

 t x x

n n

n n1 2 2
1 2

1 2

21 1
+ −

• •=
−

+
F
HG

I
KJσ

, (2.16) 

where 

 σ 2 1 1
2

2 2
2

1 2

1 1
2

=
− + −

+ −
n s n s

n n
b g b g

 

This is, of course, the well-known “Two-sample Student's t-statistic”. 
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 Suppose we obtained the following data from our experiment:  

n n x x s s1 2 1 2 1
2

2
210 23 19 8 23 27= = = = = =• •,  ,  ,   . ,  

In this case, since sample sizes are equal, we have 

 

σ 2 1
2

2
2

2
27 23

2
50
2

25

=
+

=
+

=

=

s s

 

and, consequently, 

 

t18
23 19 8
1

10
1

10
25

32
5

143

=
−

+FHG
I
KJ

=

=

.

.

.

   

 Assuming, again, a two-tailed test with α =.05 , the rejection point for a t-statistic with 18 degrees 

of freedom is 2.101, and so our current result is “not significant.” We would conclude that the performance 

of the TM group is not significantly different from that of the control group.  

2.2.2 Dependent Samples 

When samples are dependent, a particularly simple form of test statistic is available for testing linear 

combination hypotheses about means. Suppose that each of n subjects is observed J times, and you 

wish to test a linear combination hypothesis about the resulting J population means. The basic strategy of 

the simplified technique is to compute, for each subject, a linear combination score ki .  If xij  is the score 

of the ith subject on the jth repeated measure, then  

 k c xi j ij
j

J

=
=

∑
1

 (2.17) 

 By combining, for each subject, the J dependent scores into one score, we have eliminated the 

need to estimate covariances, and we have converted a J-Sample problem into a 1-Sample problem.  

Specifically, since the mean of the ki  scores, k • , has an expected value of κ , we can test the null 

hypothesis that κ = a  with a 1-Sample t-statistic of the form 
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 t k a

s n
n

k

−
•=

−
1 2

 (2.18) 

 The most familiar application of this general technique is for the “two-sample, correlated sample 

t-test,” or “matched sample t-test”, in which each subject is measured twice, and the null hypothesis is of 

the form 

 H0 1 2: μ μ= . 

 In this case, we compute, for each subject, a difference score ki , which is simply the difference 

between his/her scores on the two measures. We then perform a 1-sample test on these difference scores, 

as if we were testing a hypothesis that μ = 0 . 

 

 Example. Suppose you have a hypothesis that, because of the interesting metabolic characteristics 

of statistics students, consumption of beer has absolutely no effect on their cognitive capacities.  You 

decide to test this hypothesis by having each of 10 randomly selected students play games of “Night-

Mission Pinball” either sober, or immediately after consuming 3 beers. (To control for practice effects, 

order is counterbalanced.)  The raw data for the 10 subjects are as follows:  

 

Beer     No Beer     Difference  

 65  54  +11 

 60  187  −127 

 102  99  +3 

 143  265  −122 

 97  119  −22 

 234  445  −211 

 254  354  −100 

 45  65  −20 

 89  111  −22 

 123  167  −44 

 

Here are the summary statistics for the difference scores: 

 

k • = −654.  
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n = 10  

sk
2 5132 29= .  

 

We have 

 

t k

s nk

9 2

654
5132 29 10
654

22 65
2 89

=

=
−

=
−

= −

•

.
.

.
.

.

 

The resulting t-statistic is −2.89. 

 If we were performing the two-tailed hypothesis at the α =.05  level, the critical value of t, with 9 

degrees of freedom, is 2.262, and so we would decide that there is a significant decrement in performance 

when beer is consumed. 

 The above “dependent-sample procedure” is so simple, one might be tempted to use it all the time 

when sample sizes for the J groups are equal, even if the groups were independent samples.  However, the 

statistic (though it would be valid) would suffer a loss of power (relative to the independent sample 

procedure), since degrees of freedom are sharply reduced, and (if sample sizes are small) rejection points 

for the resultant statistics would differ by an appreciable amount. Needless to say, this procedure definitely 

should be used if samples are dependent. 

3. Specific Theory for Tests on Proportions 

In this section, we consider the general class of situations in which data are binary (i.e., the outcome is in 

one of two distinct classes, and hence can be scored either 0 or 1), and the parameter of interest is the 

population proportion π .  In such situations, we can frequently model the sample proportion p as resulting 

from n independent observations of a Bernoulli (i.e., binomial) process, and the resulting proportion p can 

be expressed as p X n= , where X is a B n,πb g  random variable (i.e., a binomial random variable with n 

trials and π probability of success).  In this case, it is clear from our previous work on the binomial 

distribution that  

 E pb g = π  (3.1) 

and 
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 σ
π π

p n
2 1

=
−b g

. (3.2) 

3.1 Independent Samples 

Furthermore, since p is also the sample mean of the binary data, the Central Limit Theorem applies, and  p 

is, asymptotically, normally distributed. In this case, we can apply the theory from Section 1.1 to develop 

general theory for testing linear combination hypotheses on independent sample proportions. Specifically, 

for any hypothesis of the form 

 H c aj j
j

J

0
1

: κ π= =
=

∑  

we could construct a test statistic of the form 

 Z K a

K

=
−

σ 2
 (3.3) 

where 

 σ K j
j

J
j j

j

c
p p

n
2 2

1

1
=

−

=
∑ d i

, (3.4) 

and 

 K c pj j
j

J

=
=

∑
1

 (3.5) 

 The statistics described in Equations 3.3–3.5 are valid, asymptotically normal test statistics.  

Below we consider two simple applications of the theory, and discover that the statistics generated by these 

equations are, in practice, “improved” slightly by minor modifications. 

 

 Example. The one-sample proportions test. Suppose that, on the basis of a random sample of size 

n from some population, we wish to test the hypothesis that a proportion a of the population favors a 

particular political point of view.  The null hypothesis is    

 H a0: π = . 

According to Equations 3.3–3.5, the test statistic would be 
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 Z p a
p p

n

=
−

−( )1
 (3.6) 

Actually, in practice, the null hypothesis is “incorporated” into the denominator.  Since if H0  is true, 

π = a ,  then, to control Type I Error, we do not need to estimate π  in the denominator.  Rather, we may 

simply use a, its assumed value under the null hypothesis. 

 This leads to an “improved” statistic, 

 Z p a
a a

n

=
−

−( )1
 (3.7) 

Most texts recommend the statistic in Equation 3.7 as superior to the statistic given in Equation 3.6. 

However, their recommendations are based, implicitly, on an overemphasis of Type I Error rate 

performance. Clearly, when the null hypothesis is false, the denominator in Equation 3.7 can be a biased 

estimator of the asymptotic standard error of p. When the denominator tends to be too large, power for this 

statistic can suffer relative to the statistic in Equation 3.6. Suppose, for example, the null hypothesis posits 

an a of .5, when the true value of π  is .3. Clearly the quantity p p( )1−  converges in the limit to .21, while 

a a( )1−  is .25. In such a situation, the statistic in Equation 3.6 will have superior power. 

 Example. The Two-Sample Independent Sample Test for Equal Proportions.  In this case, two 

independent samples of possibly unequal size are taken, and sample proportions observed, in order to 

determine whether the population proportions are the same. A classic application would be a two group 

experiment in which the major question of interest is whether a treatment (possibly a persuasive message) 

affects the proportion of the population agreeing with some position. The statistical null hypothesis is 

 H0 1 2 0: π π− =  

 Direct application of Equations 3.3–3.5 lead to the following statistic for testing this hypothesis: 

 Z
p p

p p
n

p p
n

=
−

−
+

−
1 2

1 1

1

2 2

2

1 1b g b g
 (3.8) 

 In practice, a somewhat different statistic, which incorporates the null hypothesis into the variance 

estimate in the denominator, is employed. This statistic, taking into account the assumed equality of 

proportions π 1  and π 2  uses a pooled estimator p , in place of p1  and p2  in its denominator. The 

resulting statistic is  
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 Z p p

n n
p p

=
−

+
F
HG

I
KJ −

1 2

1 2

1 1 1b g
 (3.9) 

where p  is the proportion in the group produced by combining the two experimental samples, i.e., 

 p
n p n p

n n
=

+
+

1 1 2 2

1 2

 (3.10)  

3.2 Dependent Samples 

The theory in this section is primarily useful when subjects are observed several times, (perhaps under 

several different experimental conditions), and a binary measure of behavior is recorded. In this 

situation, the sample proportions obtained on the two occasions i and j will have a covariance given by  

 σ
π π π

p p
ij i j

i j n, =
−

 (3.11) 

where π ij   refers to the population proportion of subjects who produce the behavior scored “1” on both 

occasions i and j. Theory from Section 1.3, combined with Equations 3.3–3.5 and 3.11, would allow us to 

construct test statistics for any linear combination hypothesis on dependent proportions. Here, we will 

consider the simplest special case. 

 Example. Comparing Two Correlated Proportions.  In this case, a group of n subjects is 

observed on two occasions. The statistical null hypothesis is that the proportion of subjects performing a 

behavior of interest has not changed, i.e., 

 H0 1 2 0: π π− =  (3.12) 

Direct application of the standard theory for asymptotically normal test statistics, given in Section 1.3, 

together with the special results for proportions given above, would yield the following test statistic: 

 Z n
p p

p p p p p p p
=

−

− + − − −
1 2

1 1 2 2 12 1 21 1 2b g b g b g
 

In practice, the pooled estimator p  is substituted for p1  and p2  in the denominator of the preceding 

equation, yielding 
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Z n p p

p p p p p p

n
p p

p p

=
−

− + − − −

=
−

−

1 2

12
2

1 2

12

1 1 2

2

b g b g d i

b g

 

Now, in the repeated measures case,  

 p
p p

=
+1 2

2
.   

Substituting in the above, and rearranging, we obtain 

 

Z
n p p

n p p p p

n p p

n p p n p p

=
−

− + −

=
−

− + −

1 2

1 12 2 12

1 2

1 12 2 12

b g
b g b g

b g
b g b g

 (3.13) 

 The psychometrician Quinn McNemar found an ingeniously convenient notation which allows 

further simplification. Define n01  as the number of subjects who did not perform the behavior of interest 

on the first occasion, but did on the second. Similarly, define n10  as the number who performed the 

behavior on the first occasion, but not on the second, n00  as the number who perform the behavior on 

neither occasion, and n11  as the number who perform the behavior on both occasions. 

 The number of subjects who perform the behavior on the first occasion is n n10 11+ .  Similarly, the 

number who perform the behavior on the second occasion is n n01 11+ . Hence, np n n1 10 11= + , 

np n n2 01 11= + , and np n12 11= .  Substituting in 3.13, we obtain  

 Z
n n
n n

=
−

+
10 01

10 01

 (3.14) 

Equation 3.14  is referred to as “McNemar's test for correlated proportions.” The test appears in several 

variations in a number of books. Keep in mind that, when the test is two-tailed, and, as in this 

case, the distribution of the test statistic is symmetric with respect to the α 2  and  1 2− α  probability 

points, the sign of the statistic has no effect on the decision. Hence, it does not matter whether the 

numerator is written n n01 10− , or as it appears in Equation 3.14. Also, either variant of the entire formula 

can be squared, yielding a chi-square statistic. 
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4. Specific Theory for Tests on Correlations 

There are a huge variety of correlational tests available for comparing one, two, or several correlations. 

Traditional psychological statistics tests emphasize only a tiny subset of them, and often ignore key facts 

about them, such as the effect of violation of statistical assumptions.  

4.1 Independent Samples 

In 1898, Pearson and Filon published a paper which contained a key result, i.e., the asymptotic multivariate 

distribution of sample correlation coefficients.  They showed that,  if  the population distribution is 

multivariate normal, the large sample distribution of a single sample correlation rij is approximately  

 N
n

ρ
ρ

,  
1 2 2

−F

H
GG

I

K
JJ

d i
. 

This fact can be used, along with the general theory in Section 1.2, to construct asymptotic tests on 

independent correlation coefficients. For example, suppose we wished to test the hypothesis that  

 H a0: ρ = . 

 One statistic that comes immediately to mind is obtained by substituting in our general form: 

 

Z r a

r
n

n r a
r

=
−

−

=
−

−

1

1

2 2

2

d i

b g
 

However, we could also incorporate the null hypothesis into the denominator, obtaining 

 Z n r a
a

=
−

−
F
HG
I
KJ1 2  (4.1) 

Notice that, when a = 0 , i.e., we are testing the hypothesis that ρ = 0 , the above equation takes on a 

particularly simple form, i.e.,  

 Z n r=  (4.2) 

 There are several reasons one does not find this equation in textbooks. First, although the sample 

correlation r has an asymptotic distribution that is normal, it is, unfortunately, the case that convergence to 



Unified Approach  Page 20 

this asymptotic distribution is rather slow, that is, r has a distribution which departs appreciably from 

normality at small sample sizes. This departure from normality becomes more severe as ρ approaches 1 in 

absolute value.  Consequently, the test statistic in Equation 4.1 is only useful if a is close to 0, or if n is 

very large. 

 R. A. Fisher, the famous statistician, introduced the “Fisher transform” as a solution to these 

problems. The Fisher transform, which we will denote as φ rb g , is a monotonic functional transform of r 

(actually its inverse hyperbolic tangent), which is usually computed as  

 φ r r
r

b g = +
−
F
HG
I
KJ

1
2

1
1

ln  

φ rb g  has some extremely useful statistical properties. Succinctly, we can simply say that, with a fairly high 

degree of accuracy 

 φ φ ρr N nb g b g b gc h≈ −,1 3  

 

φ rb g  is almost exactly normally distributed, regardless of the value of ρ , and, it has the added virtue of 

having a variance which, for a given sample size, is known!  The statistical problems associated with 

r can be bypassed, to a great extent,  by using φ rb g . 
 The way we shall do this is as follows. A hypothesis about ρ will be rephrased as a hypothesis 

about φ ρb g . Then, the standard normal theory in Section 1.1 will be applied to construct test statistics, 

using φ rb g  as the estimator for φ ρb g . 
 

 Example. The Fisher Z test for a single correlation. Suppose we wish to test the hypothesis of 

the form  

 H a0: ρ =  

This hypothesis is true if and only if φ ρ φb g b g= a . Hence, we can test the former hypothesis, indirectly, by 

testing the latter. The test statistic is of the form  

 Z
r a

n
=

−

−

φ φb g b g
b g1 3

 (4.3) 

 Example. Comparison of two independent correlations. Frequently, we wish to test 
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whether two correlation coefficients, measured on independent samples, are equal.  For example, we might 

wish to test whether the correlation between anxiety and smoking is the same for men as it is for women. 

The hypothesis, of the form  

 H0 1 2: ρ ρ=  

would be tested by taking samples of (possibly different) sizes n1  and n2 , computing the correlations r1  

and r2 , and using the test statistic  

 Z
r r

n n
=

−

− + −

φ φ1 2

1 21 3 1 3

b g b g
b g b g

 (4.4) 

 Unfortunately, the use of φ rb g  for linear combination hypotheses is limited to the abovementioned 

two special cases.  Fortunately, these are two fairly important special cases.  To see why the use of φ rb g  is 

limited, remember that, although it is a monotonic transform, it is not a linear transform. Looking back on 

our discussion of permissible transforms at the beginning of the year, we recall that φ rb g  preserves 

equality-inequality relationships, and preserves an ordering, but does not preserve the relative size 

relationships of intervals. Consequently, we could not, for example, use the Fisher Transform to test the 

hypothesis that ρ ρ1 2 4− =. , because the quantity φ ρ φ ρ1 2b g b g−  can take on infinitely many values, 

depending on the precise values of ρ1 and ρ 2 , and is generally not equal to φ .4b g . 

4.2 Dependent Samples  

There are many circumstances in which psychologists wish to compare correlations measured on the same 

person. For example, we might wish to test which of two personality measures is a better predictor of 

smoking behavior.  We take 3 measures, say, smoking, anxiety, and neuroticism.  The statistical null 

hypothesis would be of the form 

 H0 12 13: ρ ρ=  

 We cannot use Equation 4.4 to test this hypothesis, because the two sample correlation 

coefficients, computed on observations from the same population, would not, in general, be independent. 

They would, like means based on repeated measures, have a sampling covariance, which must be taken 

into account in a test statistic. Pearson and Filon, in their 1898 paper, showed that the large sample 

distribution of two sample correlation coefficients, rjk  and rhm , measured on the same subjects, is 

approximately bivariate normal, with rjk  and rhm  having a sampling covariance of  
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  σ
ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
r r

jh jk kh km kh hm jm jh hm kh kj jh

jh jm mh km kj jm jm jk km kh km mh
jk hm n

=
− − + − −

+ − − + − −

F
H
GG

I
K
JJ

1
2
d id i d id i

d id i d id i
.  (4.5) 

 In typical applications, we could estimate this covariance by substituting sample correlations (but 

possibly also incorporating the null hypothesis) in the above equation.  It is well-known (see, for example, 

my paper “Tests for Comparing Elements of a Correlation Matrix,” in the 1980 Psychological Bulletin that 

the covariance of two Fisher-transformed correlations  

 ϕ
σ

ρ ρjk hm
r r

jk hm

n
n

jk hm
,

,
=

−
F
HG
I
KJ − −3 1 12 2d id i

 (4.6) 

 The variance of the Fisher-transformed correlations is, as we noted above, 1 3n −b g . In practice, if 

we were testing the hypothesis that ρ ρjk hm= , we would incorporate the null hypothesis into the 

denominator of  the test statistic.  We would do this by obtaining a pooled ("ordinary least squares") 

estimate of ρ jk  and ρ hm  by averaging rjk  and rhm . We would then obtain an estimate of ϕ jk hm,  by 

substituting sample correlations in Equations 4.5 and 4.6, except that the pooled estimate would be inserted 

in place of ρ jk  and ρ hm .  The resulting statistic, Equation 15 in my 1980 Psychological Bulletin article, is 

illustrated with examples on page 249 of that article. The article discusses a wide range of statistics for 

comparing correlation coefficients.  

4.3 ADF Tests 

One aspect of correlational tests which receives virtually no coverage in standard textbooks is the 

robustness of the standard procedures to violations of assumptions. In particular, although standard 

“Normal Theory” (NT) correlational tests are not robust to violations of the assumption of multivariate 

normality, one finds no mention at all of this fact in most texts! This is surprising, because most books  do 

give prominent mention to the fact that the Student's t tests are robust to violations of the assumption of 

normality, and mention rather routinely the non-robustness of some of the traditional tests for comparing 

variances. 

 A variety of confusing, and sometimes conflicting reports about the “robustness of the Pearson r” 

have appeared over the years in places like Psychological Bulletin. The confusion in these articles 

stemmed, apparently, from the reliance by some authors on Monte Carlo methods. The basic facts about 

the effect of non-normality on the distribution of r are easily inferred from the asymptotic distribution 

theory. This theory is summarized by Steiger & Hakstian (1982, British Journal of Mathematical and 

Statistical Psychology). Here are the key points:  
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• Generally, the further ρ is from zero, the less robust the NT statistical test will be. If ρ is precisely 

zero, the test will be very robust.  

• The effect of non-normality is a complicated effect of 4th order moments of the multivariate 

distribution. Where a single correlation coefficient is involved, the kurtosis of the marginal variates is 

the most important factor. The primary effect of kurtosis is on the variance of the correlation 

coefficient. 

• Skewness, by itself, has relatively little effect. Monte Carlo studies which have appeared to determine 

otherwise have frequently confounded skewness with kurtosis, i.e., have chosen a “skewed” 

distribution which is also leptokurtic. 

 

 It is possible to correct NT tests for kurtosis, by estimating the fourth order moment structure from 

sample data, and, using formulae in Steiger and Hakstian (1982), correcting the NT test statistic. These 

corrected tests, often termed “Asymptotically Distribution Free,” or ADF tests, apparently work reasonably 

well with moderate to large sample sizes. 

 

 


